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1 Introduction

Mathlab is a 3D graphing calculator developed for CS 15-112 Fundamentals of Programming at Carnegie
Mellon University, Spring 2016. The current version was released on 29 May 2018. The latest release supports
graphing utilities in non-GUI mode. For more information, visit http://www.contrib.andrew.cmu.edu/

~xiongfed/mathlab/.

2 Graphing

This section will discuss plotting graphs in Mathlab without using the GUI.

The non-GUI mode of Mathlab works by having two background global variables: data and canvas.
data contains information vital to the program, and canvas is the tkinter canvas where figures will appear.
Rarely should it be necessary to modify data.

There are six built-in mode to Mathlab: 3D, 2D, calculator, statistics, differential equations, and
PHYSLAB. In the non-GUI version, the only useful modes for graphing are 3D and 2D.

• start(width = 800, height = 800) initializes data and canvas, where canvas has dimensions width
and height. The default mode set is 3D. This function returns data, canvas.

• getData() returns the global variable data. This is not a copy and should not be modified. Overall,
this function should not be used, but is available to the user nonetheless.

• getCanvas() returns the tkinter canvas where the figures are drawn.

• wait() will suspend further execution of the program until you have closed out of the current Mathlab
canvas window.

• clear(color = "azure") will clear the canvas with a background of color.

• setMode(select = None) will set the mode to the argument select, which should be in the set
{"MATHLAB 3D", "MATHLAB 2D", "MATHLAB Calculator", "MATHLAB Statistics", "Differential

Equations", "PHYSLAB"}. If no argument is passed, then you will be prompted to select a mode from
the choices given.

• plot(f1, f2, ..., fn) will plot each argument f1, f2, ..., fn on the canvas. However, the mode
must be set appropriately for plot to work properly.

• axes(*args) will set the bounds of the graph as provided by *args. Four arguments must be provided
if the current mode is two-dimensional, six arguments must be provided if the current mode is three-
dimensional. For example, if we are in three dimensions, and we want our bounding box to be x ∈
[−1, 2], y ∈ [−3, 4], z ∈ [−5, 6], then we would call axes(-1, 2, -3, 4, -5, 6).

• rotate(select = None) will rotate the graph if the graph is three-dimensional. The argument select
should be from the set {"Up", "Down", "Left", "Right"}.

• drawAxes() will draw the appropriate axes onto the board.
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2.1 3D graphing

3D graphing can be done using objects built into Mathlab: Cartesian3D, Parametric3D, CylindricalRDependent,
CylindricalZDependent, Spherical, and VectorField3D. Each of these objects are initialized using either
a function or a string that represents the function. For example, say that you want to initialize the function
f(x, y) = x2 − y2. Then you could either initialize this as f = Cartesian3D("x**2 - y**2") or initial-
ize this as f = Cartesian3D(lambda x, y: x**2 - y**2). Then you could plot this object using the
command plot(f).

• Cartesian3D(f) initializes a Mathlab function object represented by f, where f represents some
graph z = f(x, y). f must be a string with parameters represented by x and y or a function with
designated parameters x, y. Example: the function f(x, y) = x2 + y2, then you could do either
Cartesian3D("x**2 + y**2") or Cartesian3D(lambda x, y: x**2 + y**2).

• CylindricalZDependent(f) initializes a Mathlab function object represented by f, where f repre-
sents some graph z = f(r, θ). f must be a string with parameters represented by r and theta or a
function with designated parameters r, theta. Example: the function f(r, θ) = θ cos r, then you
could do either CylindricalZDependent("theta * cos(r)") or CylindricalZDependent(lambda

r, theta: theta * cos(r)).

• CylindricalRDependent(f) initializes a Mathlab function object represented by f, where f rep-
resents some graph r = f(z, θ). f must be a string with parameters represented by z and theta

or a function with designated parameters z, theta. Example: the function f(z, θ) =
√
z, then

you could do either CylindricalRDependent("sqrt(z)") or CylindricalZDependent(lambda z,

theta: sqrt(z)).

• Spherical(f) initializes a Mathlab function object represented by f, where f represents some graph
ρ = f(θ, φ). f must be a string with parameters represented by theta and phi or a function with
designated parameters theta, phi. Example: the function f(θ, φ) = 3 cos(

√
φ), then you could do

either Spherical("3*cos(sqrt(phi))") or Spherical(lambda theta, phi: 3*cos(sqrt(phi))).

• Parametric3D(f, minT = None, maxT = None) initializes a Mathlab function object represented
by f, where f represents some graph (x, y, z) = f(t), minT represents tmin, and maxT represents tmax.
f(t) is evaluated on the interval [tmin, tmax]. f must be a string with a parameter represented by
t or a function with designated a parameter t. Example: the function f(t) = (cos t, sin t, t), where
tmin = −5 and tmax = 5, then you could do either Parametric3D("cos(t), sin(t), t, -5, 5") or
Parametric3D(lambda t: (cos(t), sin(t), t), -5, 5).

Additionally, the following methods may be used:

• meshPlot(points) takes in a 2-dimensional sequence of points (x, y, z) and creates a mesh plot of
them on the canvas. This 2-dimensional sequence of points must be rectangular in dimensions, or in
other words, each subsequence must have the same length.
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2.2 2D graphing

2D graphing can be done using objects built into Mathlab: Cartesian2DyDep, Cartesian2DxDep,
Polar, Parametric2D, Point, and VectorField2D. Each of these objects are initialized using either a func-
tion or a string that represents the function. For example, say that you want to initialize the function
f(x) = x2. Then you could either initialize this as f = Cartesian2DyDep("x**2") or initialize this as f =

Cartesian2DyDep(lambda x: x**2). Then you could plot this object using the command plot(f) when
in the mode MATHLAB 2D.

• Cartesian2DyDep(f) initializes a Mathlab function object represented by f, where f represents some
graph y = f(x). f must be a string with a parameter represented by x or a function with a designated
parameter x. Example: the function f(x) =

√
x, then you could do either Cartesian2DyDep("sqrt(x)")

or Cartesian2DyDep(lambda x: sqrt(x)).

• Cartesian2DxDep(f) initializes a Mathlab function object represented by f, where f represents some
graph x = f(y). f must be a string with a parameter represented by y or a function with a designated
parameter y. Example: the function f(y) = y2, then you could do either Cartesian2DxDep("sqrt(y)")
or Cartesian2DxDep(lambda y: sqrt(y)).

• Polar(f) initializes a Mathlab function object represented by f, where f represents some graph
r = f(θ). f must be a string with a parameter represented by theta or a function with a designated
parameter theta. Example: the function f(θ) = 2 + 2 cos θ, then you could do either Polar("2 +

2*cos(theta)") or Polar(lambda theta: 2 + 2*cos(theta)).

• Parametric2D(f, minT = None, maxT = None) initializes a Mathlab function object represented
by f, where f represents some graph (x, y) = f(t), minT represents tmin, and maxT represents tmax.
f(t) is evaluated on the interval [tmin, tmax]. f must be a string with a parameter represented by
t or a function with designated a parameter t. Example: the function f(t) = (cos t, sin t), where
tmin = 0 and tmax = 2π, then you could do either Parametric3D("cos(t), sin(t), 0, 2*pi") or
Parametric3D(lambda t: (cos(t), sin(t)), 0, 2*pi).

• Point(x, y) initializes a Mathlab object that represents a single point (x, y) ∈ R2. For some point p,
plot(p) draws the point p. Additionally, the method p.draw(canvas, data, label = True, color

= "black") draws p, with a label as label if label is a string, with the default (x, y) values if label
== True, otherwise no label if label == False. The color of the point is provided by the parameter
color as a string.

Additionally, the following methods may be used:

• scatterPlot(points, color = "black") takes in a set or sequence of (x, y) points as tuples and
plots them on the canvas.

• linePlot(points, color = None) takes in an ordered sequence of (x, y) points as tuples and plots
them on the canvas. If color is None, a randomly generated color will be used.
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2.3 Differential Equations

Mathlab can also be used to solve first-order and second-order ordinary differential equations and the
heat equation.

• Order1ODE(f, x0 = None, y0 = None) initializes a Mathlab object that represents a first-order
ordinary differential equation in the form dy

dx = f(x, y) with initial conditions x0, y0. As before, f can
be a string or a function with parameters x, y. plot(f) will generate a slope field of f , while if initial
conditions x0, y0 are given, an approximated solution given this initial condition is also drawn.

• Order2ODE(f, x0 = None, y0 = None, yPrime0 = None) initializes a Mathlab object that repre-

sents a second-order ordinary differential equation in the form d2y
dx2 = f(x, y, y′) with initial conditions

x0, y0, y
′
0. As before, f can be a string or a function with parameters x, y, Dy, where Dy represents

the slope y′. plot(f) will generate an approximated solution given this initial condition.

• HeatEq(f, alpha, ic, t0 = 0, t min = -5, t max = 5, x min = -5, x max = 5) initializes a Math-

lab object that represents a boundary value problem of the one-dimensional heat equation ∂u
∂t = α∂

2u
∂x2 .

Here, f is a dummy function, any function will do. ic is a function f(x) = u(x, t0) with parameter
x that represents the initial condition at time t0. The other parameters t0, t min, t max, x min,

x max represent the variables t0, tmin, tmax, xmin, xmax respectively. Note that the solution u(x, t)
is provided such that the boundary conditions are held constant, i.e. u(xmin, t) = f(xmin) and
u(xmax, t) = f(xmax). When graphed, time t is plotted along the y-axis. The mode must be set
to MATHLAB 3D when working with HeatEq.

• WaveEq(f, c2, ic, icPrime, t0 = 0, t min = -5, t max = 5, x min = -5, x max = 5) initial-
izes a Mathlab object that represents a boundary value problem of the one-dimensional wave equation
∂2u
∂t2 = c2 ∂

2u
∂x2 , where c2 is provided by the parameter c2. Here, f is a dummy function, any function

will do. ic is a function f(x) = u(x, t0) with parameter x that represents the initial position at
time t0, and icPrime is a function g(x) = ut(x, t0) with parameter x that represents the initial ve-
locity at time t0. The other parameters t0, t min, t max, x min, x max represent the variables
t0, tmin, tmax, xmin, xmax respectively. Note that the solution u(x, t) is provided such that the veloc-
ity at the boundaries is held constant, i.e. ut(xmin, t) = g(xmin) and ut(xmax, t) = g(xmax). When
graphed, time t is plotted along the y-axis. The mode must be set to MATHLAB 3D when working with
WaveEq.

2.4 PHYSLAB

Physlab is the Mathlab particle simulator.

• ForceField(f) initializes a Physlab object that represents some sort of field. f must be a string
of three comma-separated components representing the strength of the force in the directions î, ĵ, k̂
respectively, each of which are a function of the parameters x, y, z, t, where (x, y, z, t) are the space
and time variables. Alternatively, f can be a function with parameters x, y, z, t that returns a
3-tuple (Fx, Fy, Fz) ∈ R3.

• Particle(ef = ForceField("0,0,0"), mf = ForceField("0,0,0"), gf = ForceField("0,0,0"),

ff = ForceField("0,0,0"), charge = 1e-9, mass = 1, x0 = 0, y0 = 0, z0 = 0, xPrime0 = 0,

yPrime0 = 0, zPrime0 = 0, t min = 0, t max = 10) initializes a Physlab object that represents
a particle within some force fields. ef represents the electric field on the particle in units N/C. mf
represents the magnetic field on the particle in units T. gf represents the gravitational field on the
particle in units N/kg. ff represents any other forces on the object in units N. charge represents the
charge of the particle in units of C, and mass represents the mass of the particle in units kg. The
initial position (x0, y0, z0) at time tmin is given by x0, y0, z0, and the initial velocity (x′0, y

′
0, z
′
0) is

given by xPrime0, yPrime0, zPrime0. The time bounds of the simulation (tmin, tmax) are given by
parameters t min, t max.
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2.5 Summary

Object Mode Parameters Representation
Cartesian3D 3D f z = f(x, y)

CylindricalZDependent 3D f z = f(r, θ)
CylindricalRDependent 3D f r = f(z, θ)

Spherical 3D f r = f(θ, φ)
Parametric3D 3D f, t min, t max (x, y, z) = f(t), t ∈ [tmin, tmax]

Cartesian2DyDep 2D f y = f(x)
Cartesian2DxDep 2D f x = f(y)

Polar 2D f r = f(θ)
Parametric2D 2D f, t min, t max (x, y) = f(t), t ∈ [tmin, tmax]

Point 2D x, y (x, y)

Order1ODE DE f, x0, y0 dy
dx = f(x, y), IC: y0 = y(x0)

Order2ODE DE f, x0, y0, yPrime0 d2y
dx2 = f(x, y, y′), IC: y0 = y(x0), y′0 = y′(x0)

HeatEq 3D alpha, f, ∂u
∂t = α∂

2u
∂x2

t 0, t min, t max, IC: f(x) = u(x, t0)
x min, x max BC: u(xmin, t) = f(xmin), u(xmax, t) = f(xmax)

WaveEq 3D c2, f, g, ∂2u
∂t2 = c2 ∂

2u
∂x2

t 0, t min, t max, IC: f(x) = u(x, t0), g(x) = ut(x, t0)
x min, x max BC: ut(xmin, t) = g(xmin), ut(xmax, t) = g(xmax)

ForceField PHY f F = (Fx, Fy, Fz) = f(x, y, z, t)
Particle PHY ef, mf, gf, ff, Point mass/charge in force fields

charge, mass,

x0, y0, z0,

xPrime0, yPrime0, zPrime0

Method Mode Parameters (with defaults)
meshPlot 3D points

scatterPlot 2D points, color = "black"

linePlot 2D points, color = None
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3 Basic Operations

3.1 math library

Anything part of Python’s math library can be directly called in Mathlab. Additionally, Mathlab also
has the following features:

• All inverse trigonometric functions can be called using the arc prefix as well as the a prefix. For
example, sin−1 x can be called as either asin(x) or arcsin(x).

• ln refers to the natural logarithm function with base e.

• The default base for the log function is 10 in Mathlab, not e.

• The functions sec, csc, cot have also been added to Mathlab as sec, csc, cot respectively.

3.2 Discontinuous and Non-Differentiable Functions

Mathlab also has the following built-in discontinuous and non-differentiable functions:

• heaviside(x) represents the Heaviside step function H(x):

H(x) =


0 x < 0
1
2 x = 0

1 x > 0

• sgn(x) represents the sign function sgn(x).

sgn(x) =


−1 x < 0

0 x = 0

1 x > 0

• delta(x, h = 100) approximates the Dirac delta function δ(x). The approximation used is

delta(x) =

{
1
h 0 ≤ x < h

0 else

• boxcar(x, a, b) represents the boxcar function, where

boxcar(x) =


1 a < x < b
1
2 x = a or x = b

0 else

• rectangular(x) represents the rectangular function Π(x).

Π(x) =


0 |x| > 1

2
1
2 |x| = 1

2

1 |x| < 1
2

• ramp(x) represents the ramp function, R(x) = max(x, 0).

• square(x, period = 1) represents the square wave function with the period given by period.

• triangle(x, period = 1) represents the triangle wave function with period specified by period.

• sawtooth(x, period = 1) represents the sawtooth wave function with period specified by period.
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3.3 Counting

• nPr(n, r) returns n!
(n−r)! , the number of ways of generating a permutation of r objects from a set of

n.

• nCr(n, r) returns n!
r!(n−r)! , the number of ways of selecting r objects from a set of n.

3.4 Series and Sequences

• series(expression, start, end) takes in an expression f with argument i and integers start

and end. It returns
end∑

i=start

f(i).

• sequenceExplicit(expression, start, end) takes in an expression expression f with argument
i and integers start and end. It returns a list of [f(i) for all i = start ... end].

• sequenceRecursive(expression, initial, iterations) takes in an expression expression f with
argument i and integers initial and iterations. Here, i is the previous term of the sequence, and
f(i) is the next term of the sequence. It returns the recursively defined sequence as a list.

3.5 Other useful functions

Mathlab also has the following built-in functions:

• roundif(x, epsilon = 1e-10) rounds x if x is within ε of the nearest integer.

• root(x, a) returns a
√
x.
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4 Linear Algebra

4.1 Vectors

In Mathlab, vectors are represented by the Vector object.

• Vector(L) creates initializes a Vector from L, which could be a tuple or a list.

• v.mag() returns the magnitude |~v| from vector ~v.

• abs(v) also returns the magnitude |~v|.

• len(v) returns dimension of vector ~v.

• iter(v) returns an iterable on v.

• reversed(v) returns a Vector with the elements reversed.

• x in v returns True if and only if x is a component in vector ~v, False otherwise.

• v[i] gets the ith entry of ~v. Note that v[i] = x is only supported if the original L supplied is mutable.

• v + w evaluates to a vector ~v + ~w, where both ~v and ~w are instances of Vector. As such, ~v and ~w
must be dimensionally consistent.

• v - w evaluates to a vector ~v − ~w, where both ~v and ~w are instances of Vector. As such, ~v and ~w
must be dimensionally consistent.

• v * c or c * v evaluates to a vector c~v, where ~v is an instance of Vector and c is a scalar.

• v / c evaluates to a vector 1
c~v, where ~v is an instance of Vector and c is a scalar.

• v // c evaluates to a vector where each entry of ~v is floor divided by c, where ~v is an instance of
Vector and c is a scalar.

• v.dot(w) evaluates to a vector ~v · ~w, where both ~v and ~w are instances of Vector. As such, ~v and ~w
must be dimensionally consistent.

• v.cross(w) evaluates to a vector ~v × ~w, where both ~v and ~w are instances of Vector and ~v, ~w ∈ R3.
Mathlab does not support 7-dimensional cross products.

• round(v, ndigits = None) would apply roundif to v if ndigits is None, or round if ndigits is not
None.

• v == w returns True if and only if v and w are dimensionally consistent and have the same elements.

• -v returns the vector −~v.

• +v returns a copy of vector ~v.

• v.comp(w) returns the scalar projection of ~v onto ~w, or comp~w~v.

• v.proj(w) returns the vector projection of ~v onto ~w, or proj~w~v.

• v.rej(w) returns the vector rejection of ~v onto ~w, or proj⊥~w~v.

• v.unit() returns the unit vector v̂.

• v.latex() returns the LATEX representation of ~v in bracket notation.

• gs(L) takes in a sequence L of Vector instances and performs the Gram-Schmidt process on them in
the order provided.

• mgs(L) takes in a sequence L of Vector instances and performs the modified Gram-Schmidt process
on them in the order provided.
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4.2 Matrices

In Mathlab, matrices are represented by the Matrix object.

• Matrix(L) initializes a Matrix with L, which must be a two-dimensional sequence that is dimensionally
consistent.

• A.row(i) returns a Vector that represents the ith row.

• A.col(i) returns a Vector that represents the ith column.

• A.dim() returns m, n, where A ∈ Rm×n.

• A[i][j] retrieves the (i, j) entry of A, i.e. Ai,j .

• A.isSquare() returns True if and only if A is a square matrix.

• A.tr() returns the trace of A, or tr(A).

• A.det() returns the determinant of A, det(A).

• abs(A) also returns the determinant of A, det(A).

• A.minor(i, j) returns the (i, j) minor of A, or Mi,j .

• A.cofactor(i, j) returns the (i, j) cofactor of A, or (−1)i+jMi,j .

• A.transpose() returns the transpose of A, or AT .

• A + B returns a Matrix A+B given two dimensionally consistent matrices A,B.

• A - B returns a Matrix A−B given two dimensionally consistent matrices A,B.

• A * B, where B is a Matrix returns a Matrix AB ∈ Rm×p given two dimensionally consistent matrices
A ∈ Rm×n, B ∈ Rn×p.

• A * v, where v is a Vector returns a Vector A~v ∈ Rm given a dimensionally consistent vector v ∈
Rn, A ∈ Rm×n.

• v * A, where v is a Vector returns a Matrix ~vA ∈ R1×n given a dimensionally consistent vector
v ∈ Rm, A ∈ Rm×n.

• c * A or A * c for some scalar c will return a Matrix cA.

• A / c for some scalar c will return a Matrix 1
cA.

• A // c for some scalar c will return a Matrix with each element of A floor divided by c.

• A ** k for some integer k will return a Matrix Ak.

• -A will return the Matrix −A.

• +A will return a copy of Matrix A.

• A.ref() computes the row-echelon form of A.

• A.rref() computes the reduced row-echelon form of A.

• A.inverse(check = True) computes the inverse matrixA−1 if it exists. The optional check parameter
checks to make sure that the inverse of the result is approximately the original matrix, throwing an
AssertionError otherwise.

• A.qr() returns Q, R, both instances of Matrix, where Q,R represents the QR-decomposition of A.
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• round(A, ndigits = None) would apply roundif to the entries of A if ndigits is None, or round if
ndigits is not None.

• A == B returns True if and only if A and B have the same dimensions and each element of Ai,j = Bi,j
for all i, j.

• A.latex() returns the LATEX representation of A.

• identity(n) returns an n× n identity matrix.
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5 Calculus

5.1 Single Variable Calculus

Note here that all functions f must take in a single parameter x.

• derivative(f, x) takes in a function f(x) and a value x and returns an approximation of f ′(x) using
the limit definition of a derivative.

• secondDerivative(f, x) takes in a function f(x) and a value x and returns an approximation of
f ′′(x) using the limit definition of a second derivative.

• integral(f, a, b) takes in a function f(x) and two constants a, b and returns an approximation of∫ b
a
f(x)dx.

• limit(f, x) takes in a function f(x) and a value a and returns an approximation of lim
x→a

f(x). It will

return "limit does not exist" if it cannot find a limit.

5.2 Multivariable Calculus

• doubleIntegral(f, constraints, xMin, xMax, yMin, yMax, totalPoints = 20000, string = True)

approximates a double integral
∫∫
D
f(x, y)dydx using Monte Carlo simulation. Here, f is some function

f(x, y). The domain D is described by constraints, which is a collection of functions with param-
eters x, y that return a bool. xMin, xMax, yMin, yMax determines a rectangular bounding box on
D. totalPoints determines the number of simulation points to sample within D, and string will
return the result as a string to indicate uncertainty if it is True, if False, it will return a float.

• tripleIntegral(f, constraints, xMin, xMax, yMin, yMax, zMin, zMax, totalPoints = 20000,

string = True) approximates a double integral
∫∫∫

D
f(x, y, z)dzdydx using Monte Carlo simulation.

Here, f is some function f(x, y, z). The domain D is described by constraints, which is a collection
of functions with parameters x, y, z that return a bool. xMin, xMax, yMin, yMax, zMin, zMax

determines a rectangular bounding box on D. totalPoints determines the number of simulation
points to sample within D, and string will return the result as a string to indicate uncertainty if it is
True, if False, it will return a float.

• gradient(f, x, y) takes in a function f(x, y) and a (x, y) point and returns an approximation of
∇f(x, y).

• gradient3(f, x, y, z) takes in a function f(x, y, z) and a (x, y, z) point and returns an approxima-
tion of ∇f(x, y, z).

• minimize3D(f, point) takes in a function f(x, y) and some point (x, y) and performs gradient descent
to approximate a local minimum (x∗, y∗, f(x∗, y∗)) of f(x, y) near this point.

• maximize3D(f, point) takes in a function f(x, y) and some point (x, y) and performs gradient ascent
to approximate a local maximum (x∗, y∗, f(x∗, y∗)) of f(x, y) near this point.

• curl(P, Q, R, x, y, z) takes in a vector field ~F = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉, which is de-
scribed by the given functions P,Q,R. It also takes in a point described by (x, y, z) and returns an

approximation of the curl ∇× ~F at point (x, y, z) as a 3-tuple.

• divergence(P, Q, R, x, y, z) takes in a vector field ~F = 〈P (x, y, z), Q(x, y, z), R(x, y, z)〉, which
is described by the given functions P,Q,R. It also takes in a point described by (x, y, z) and returns

an approximation of the divergence ∇ · ~F at point (x, y, z). divergence is only used for vector fields
in R3.

• laplacian(f, x, y, z) takes in a function f(x, y, z) and a point described by (x, y, z). It returns an
approximation of the Laplacian ∇2f at point (x, y, z). laplacian is only used for vector fields in R3.
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5.3 Analysis with Calculus

This section describes some built-in analysis methods that use calculus.

• zero(f, guess) takes in a function f(x) and an initial guess as guess, and returns an approximation
of a zero of f using Newton’s method.

• minimize(f, x) takes in a function f(x) and some point x and performs gradient descent to approx-
imate a local minimum (x∗, f(x∗)) of f(x) near this point.

• maximize(f, x) takes in a function f(x) and some point x and performs gradient ascent to approxi-
mate a local maximum (x∗, f(x∗)) of f(x) near this point.
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6 Probability and Statistics

6.1 Continuous Distributions

• normalDistribution(mean, stdev, a, b) takes in a mean µ, stdev σ, and parameters a, b. It returns
Pr[a ≤ X ≤ b] given that X ∼ N (µ, σ2).

• normalPDF(mean, stdev, x) takes in a mean µ, stdev σ, and parameter x. It returns the PDF of a
normal distribution evaluated at x given that X ∼ N (µ, σ2).

• inverseNormal(probability, mean, stdev) takes in a mean µ, stdev σ, and parameter probability
p. It returns the value of x such that Pr[X ≤ x] = p given that X ∼ N (µ, σ2).

• tPDF(value, degreesOfFreedom) takes in a value x and degreesOfFreedom ν. It returns the PDF
of Student’s t-distribution with ν degrees of freedom evaluated at x.

• tDistribution(lower, upper, degreesOfFreedom) takes in values lower a, upper b, and degreesOfFreedom

ν. It returns Pr[a ≤ T ≤ b] given that T follows Student’s t-distribution with ν degrees of freedom.

• inverseT(probability, degreesOfFreedom) takes in a probability p and degreesOfFreedom ν.
It returns the value of t such that Pr[T ≤ t] = p given that T follows Student’s t-distribution with ν
degrees of freedom.

• exponentialPDF(l, x) takes in a l λ and a value x and returns the PDF of the exponential distribution
with parameter λ evaluated at x.

• exponentialDistribution(l, lower, upper takes in a l λ and bounds lower a and upper b and
returns Pr[a ≤ X ≤ b] given that X follows the exponential distribution with parameter λ.

• gammaPDF(alpha, beta, x) takes in parameters alpha α and beta β and a value x and returns the
PDF of the gamma distribution with parameters α, β evaluated at x.

• gammaDistribution(alpha, beta, lower, upper) takes in parameters alpha α and beta β and
bounds lower a and upper b and returns Pr[a ≤ X ≤ b] given that X follows the gamma distribution
with parameters α, β.

• betaPDF(alpha, beta, x) takes in parameters alpha α and beta β and a value x and returns the
PDF of the beta distribution with parameters α, β evaluated at x.

• betaDistribution(alpha, beta, lower, upper) takes in parameters alpha α and beta β and
bounds lower a and upper b and returns Pr[a ≤ X ≤ b] given that X follows the beta distribu-
tion with parameters α, β.
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6.2 Discrete Distributions

• binomial(trials, probability, successes) takes in the probability of success probability p, the
total number of trials trials n, and the total number of successes successes k, and returns Pr[X = k]
given that X ∼ B(n, p).

• negativeBinomial(successes, probability, trials) takes in the total number of successes we
must observe successes r, the probability of success occurring probability p, and the number of
trials we undergo before observing r successes trials k. It returns Pr[X = k] given that X follows a
negative binomial distribution with parameters r, p.

• geometric(probability, trials) takes in the probability of success p, and the number of trials
needed to observe a success k. It returns Pr[X = k] given that X follows a geometric distribution with
parameter p.

• hypergeometric(N, K, n, k) takes in the total number of items N , the total number of successes
K, the number of trials drawn n, and the number of observed successes k. It returns Pr[X = k] given
that X follows a hypergeometric distribution with parameters N,K, n.

• poisson(expected, value) takes in the expected value expected λ, and actual value observed value

k. It returns Pr[X = k] given that X follows a Poisson distribution with parameter λ.

6.3 Regression

• linearRegression(L) takes in a sequence L of (x, y) points and returns a tuple (m, b, r2), which
represent the slope, the y-intercept, and the correlation coefficient squared respectively.

• exponentialRegression(L) takes takes in a sequence L of (x, y) points and returns a tuple (a, b, r2),
where the regression line follows the form f(x) = aebx, and r2 is the correlation coefficient squared.

• logarithmicRegression(L) takes takes in a sequence L of (x, y) points and returns a tuple (a, b, r2),
where the regression line follows the form f(x) = a lnx+b, and r2 is the correlation coefficient squared.

• powerRegression(L) takes takes in a sequence L of (x, y) points and returns a tuple (a, b, r2), where
the regression line follows the form f(x) = axb, and r2 is the correlation coefficient squared.

• polynomialRegression(points, m) takes takes in a sequence points of (x, y) points and the degree
of the polynomial m and returns a tuple (β, r2), where β is a list of coefficients in order from highest

power to smallest power, or in other words, f(x) =
m∑
i=0

βix
m−i. r2 is the correlation coefficient squared.

6.4 Sample Statistics

• avg(L) takes in a sequence of numbers and returns the average of them.

• standardDeviation(L) takes in a sequence of numbers and returns the sample standard deviation.

• popStandardDeviation(L) takes in a sequence of numbers and returns the population standard devi-
ation.

• median(L) takes in a sequence of numbers and returns the median of them.

• firstQuartile(L) takes in a sequence of numbers and returns the first quartile.

• thirdQuartile(L) takes in a sequence of numbers and returns the third quartile.

• sumSquared(L) takes in a sequence of numbers and returns the sum of squares
∑
x∈L

x2.
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6.5 Confidence Intervals

• zIntervalStats(mean, stdev, n, confidence) takes in a sample mean x̄, known population stan-
dard deviation σ, sample size n, and confidence level α, and returns the α confidence interval of the
true mean µ based on x̄, σ, n.

• zIntervalData(L, stdev, confidence) takes in a sample of data L, known population standard
deviation σ, and confidence level α, and returns the α confidence interval of the true mean µ based on
the data and σ.

• zIntervalProportion(successes, trials, confidence) takes in the total number of successes
successes, the total number of trials trials, and confidence level α, and returns the α confidence
interval of the true proportion p.

• zIntervalStatsTwoSample(mean1, stdev1, n1, mean2, stdev2, n2, confidence) takes in from
one sample a sample mean x̄1, known population standard deviation σ1, and sample size n1, and from
from another sample a sample mean x̄2, known population standard deviation σ2, and sample size n2,
and confidence level α, and returns the α confidence interval of the true difference in means µ1 − µ2.

• zIntervalDataTwoSample(L1, stdev1, L2, stdev2, confidence) takes in two sequences of data
L1 and L2, their known population standard deviations σ1, σ2, and confidence level α, and returns the
α confidence interval of the true difference in means µ1 − µ2.

• zIntervalProportionTwo(succ1, trials1, succ2, trials2, confidence) takes in the total num-
ber of successes succ1 and total number of trials trials1 of one data sample, and then takes the total
number of successes succ2 and total number of trials trials2 of another data sample, and confidence
level α, and returns the α confidence interval of the true difference in proportions p1 − p2.

• tIntervalStats(mean, stdev, n, confidence) takes in a sample mean x̄, the sample standard
deviation s, the sample size n, and confidence level α, and returns the α confidence interval of the true
mean µ based on x̄, s, n.

• tIntervalData(L, confidence) takes in a sample of data L and confidence level α, and returns the
α confidence interval of the true mean µ based on the data provided.

• tIntervalStatsTwoSample(mean1, stdev1, n1, mean2, stdev2, n2, confidence) takes in from
one sample a sample mean x̄1, sample standard deviation s1, and sample size n1, and from from another
sample a sample mean x̄2, sample standard deviation s2, and sample size n2, and confidence level α,
and returns the α confidence interval of the true difference in means µ1 − µ2.

• tIntervalDataTwoSample(L1, L2, confidence) takes in two sequences of data L1 and L2 and con-
fidence level α, and returns the α confidence interval of the true difference in means µ1 − µ2.
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7 Numerical Methods

7.1 Ordinary Differential Equations and Systems: OrdDiffEq

The object OrdDiffEq has three methods that can be used to solve first-order ordinary differential equations.
Note that any higher-order ODE can be reduced to a first-order ordinary system by creating additional
variables for higher-order derivatives. As such, the Vector object can be used with OrdDiffEq, see the
example in section 8.5.

• OrdDiffEq(f, x0, y0, x min, x max, step) initializes an ordinary differential equation with an
initial condition. f is a function with parameters x, y that represents some f(x, y) = dy

dx . Here,
y could be a Vector object. The parameters x0, y0 represent some initial condition (x0, y0), and
x min, x max represents some the domain boundaries xmin, xmax such that x ∈ [xmin, xmax] on which
the ODE will be solved. step represents the step size ∆x.

• solveEuler() uses Euler’s method to solve the differential equation, and returns a list of (x, y) points
that approximate the solution.

• solveHeun() uses Heun’s method to solve the differential equation, and returns a list of (x, y) points
that approximate the solution.

• solveRK4() uses the Runge-Kutta 4 method to solve the differential equation, and returns a list of
(x, y) points that approximate the solution.

7.2 Heat Equation in One-Dimension: HeatEq

The object HeatEq represents a boundary value problem of the one-dimensional heat equation ∂u
∂t = α∂

2u
∂x2 .

• HeatEq(f, alpha, ic, t0 = 0, t min = -5, t max = 5, x min = -5, x max = 5) initializes a bound-
ary value problem. As explained in section 2.3, f is a dummy function, any function will do. ic is
a function f(x) = u(x, t0) with parameter x that represents the initial condition at time t0. The
other parameters t0, t min, t max, x min, x max represent the variables t0, tmin, tmax, xmin, xmax
respectively. Note that the solution u(x, t) is provided such that the boundary conditions are held
constant, i.e. u(xmin, t) = f(xmin) and u(xmax, t) = f(xmax). When graphed, time t is plotted along
the y-axis.

• solve(dt, dx) is used to numerically solve the boundary value problem given using the forward-time
central-space (FTCS) and backward-time central-space (BTCS) schemes. It returns a 2-dimensional
list of points (x, t, u(x, t)) that approximate the solution u.

• generateVectors(data, skip = True) returns the set of points (x, t, u(x, t)) in a 2-dimensional list
in the numerical solution that Mathlab uses by default to generate the figure when plot(f) is called.
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7.3 Wave Equation in One-Dimension: WaveEq

The object WaveEq represents a boundary value problem of the one-dimensional wave equation ∂2u
∂t2 = c2 ∂

2u
∂x2 .

• WaveEq(f, c2, ic, icPrime, t0 = 0, t min = -5, t max = 5, x min = -5, x max = 5) initial-
izes a boundary value problem. As explained in section 2.3, c2 is provided by the parameter c2. Here,
f is a dummy function, any function will do. ic is a function f(x) = u(x, t0) with parameter x that
represents the initial position at time t0, and icPrime is a function g(x) = ut(x, t0) with parameter
x that represents the initial velocity at time t0. The other parameters t0, t min, t max, x min,

x max represent the variables t0, tmin, tmax, xmin, xmax respectively. Note that the solution u(x, t) is
provided such that the velocity at the boundaries is held constant, i.e. ut(xmin, t) = g(xmin) and
ut(xmax, t) = g(xmax).

• solve(dt, dx) is used to numerically solve the boundary value problem given using the forward-time
central-space (FTCS) and backward-time central-space (BTCS) schemes. It returns a 2-dimensional
list of points (x, t, u(x, t)) that approximate the solution u.

• generateVectors(data, skip = True) returns the set of points (x, t, u(x, t)) in a 2-dimensional list
in the numerical solution that Mathlab uses by default to generate the figure when plot(f) is called.

7.4 Point Particle Simulation in Force Fields: Particle

The object Particle simulates a point mass and charge within some force fields.

• Particle(ef = ForceField("0,0,0"), mf = ForceField("0,0,0"), gf = ForceField("0,0,0"),

ff = ForceField("0,0,0"), charge = 1e-9, mass = 1, x0 = 0, y0 = 0, z0 = 0, xPrime0 = 0,

yPrime0 = 0, zPrime0 = 0, t min = 0, t max = 10) initializes a particle. ef represents the elec-
tric field on the particle in units N/C. mf represents the magnetic field on the particle in units T. gf
represents the gravitational field on the particle in units N/kg. ff represents any other forces on the
object in units N. charge represents the charge of the particle in units of C, and mass represents the
mass of the particle in units kg. The initial position (x0, y0, z0) at time tmin is given by x0, y0, z0,
and the initial velocity (x′0, y

′
0, z
′
0) is given by xPrime0, yPrime0, zPrime0. The time bounds of the

simulation [tmin, tmax] are given by parameters t min, t max.

• solve(dt) solves the initial value problem given some time step dt, or ∆t mathematically.
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8 Examples

Note that in all of these examples, you must place the file mathlab.py in the same directory as the file that
you’re working in.

8.1 3D Graphing: Hyperbolic Paraboloid

The following code will graph a Pringles chip following the equation f(x, y) = x2 − y2.

# import mathlab

from mathlab import *

# start mathlab and clear canvas

start()

clear()

# set the bounds of the x, y, z axes

axes(-1, 1, -1, 1, -1, 1)

# rotate the frame twice to the right

rotate("Right")

rotate("Right")

drawAxes()

# plot the function f(x, y) = x^2 - y^2

functionLine = lambda x, y: x**2 - y**2

# alternatively: functionLine = "x**2 - y**2"

f = Cartesian3D(functionLine)

plot(f)

# suspend window

wait()

8.2 3D Graphing: Helix

The following code will graph a parametrized helix following the equation f(t) = (cos t, sin t, t/5) on the
interval t ∈ [−25, 25].

# import mathlab

from mathlab import *

# start mathlab and clear canvas

start()

clear()

# set the bounds of the x, y, z axes and draw

axes(-5, 5, -5, 5, -5, 5)

drawAxes()

f = Parametric3D(lambda t : cos(t), sin(t), t/5, -25, 25)

plot(f)

# suspend window

wait()
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8.3 2D Graphing: Sine Wave

# import mathlab

from mathlab import *

# start mathlab, clear canvas, set to 2D

start()

clear()

setMode("MATHLAB 2D")

# set the bounds of the x, y axes

axes(-5, 5, -5, 5)

drawAxes()

# plot the function f(x) = sin(x)

functionLine = lambda x: sin(x)

# alternatively: functionLine = "sin(x)"

f = Cartesian2DyDep(functionLine)

plot(f)

# suspend window

wait()

8.4 2D Graphing: Cardioid

Objective: graph r(θ) = 2 + 2 cos θ.

# import mathlab

from mathlab import *

# start mathlab, clear canvas, set to 2D

start()

clear()

setMode("MATHLAB 2D")

# set the bounds of the x, y axes

axes(-5, 5, -5, 5)

drawAxes()

# plot the function f(x) = sin(x)

functionLine = lambda theta: 2 + 2 * cos(theta)

# alternatively: functionLine = "2 + 2 * cos(theta)"

f = Polar(functionLine)

plot(f)

# suspend window

wait()
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8.5 Second Order Ordinary Differential Equation

Here, we will solve and plot the solution of the ordinary differential equation

y′′ + y = 0

with the initial value as y(0) = 0, y′(0) = 1. Here, we will create an additional dummy variable ẏ to be y′.
This leads us to the first-order system (

y
ẏ

)′
=

(
0 1
−1 0

)(
y
ẏ

)
with initial condition (

y
ẏ

)
0

=

(
0
1

)
We will consider the time interval [−5, 5]. The solution should be equivalent to sinx.

# import mathlab

from mathlab import *

# start mathlab, set to 2D

start()

clear()

setMode("MATHLAB 2D")

# set bounds of the x, y axes

axes(-5, 5, -5, 5)

drawAxes()

# set up differential equation

M = Matrix([[0, 1], [-1, 0]])

g = OrdDiffEq(lambda x, y: M * y, 0, Vector([0, 1]), -5, 5, 0.1)

# solve and plot solution

sol = g.solveRK4()

points = [(x, y[0]) for x, y in sol]

linePlot(points)

# suspend window

wait()
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8.6 Pendulum Motion: Non-linear 2nd-Order Ordinary Differential Equation

In physics, the motion of a pendulum can be described by the equation

d2θ

dt2
+
g

`
sin θ = 0

Here, we’ll solve for the case that g
` = 1, so we have

d2θ

dt2
+ sin θ = 0

Just like in section 8.5, we’ll introduce a dummy variable θ̇ = θ′, so now we have the following system:{
θ′(t) = θ̇

θ̇′(t) = − sin θ

In code, our Vector y will represent

(
θ

θ̇

)
. Here, we will consider the time interval [−5, 5] and the initial

condition (
θ

θ̇

)
0

=

(
π
4
0

)
# import mathlab

from mathlab import *

# start mathlab, set to 2D

start()

clear()

setMode("MATHLAB 2D")

# set bounds of the x, y axes

axes(-5, 5, -5, 5)

drawAxes()

# set up differential equation

f = lambda x, y: Vector([y[1], -sin(y[0])])

g = OrdDiffEq(f, 0, Vector([pi/4, 0]), -5, 5, 0.1)

# solve and plot solution

sol = g.solveRK4()

linePlot([(x, y[0]) for x, y in sol])

# suspend window

wait()

23



8.7 Heat Equation Example

# import mathlab

from mathlab import *

# start and clear canvas

start()

clear()

# set axes

axes(-5, 5, -5, 5, -1, 1)

# heat equation with initial condition

ic = lambda x: 2*normalPDF(0, 1, x)

t0 = -5

f = HeatEq(lambda x : None, 0.2, ic, t0, -5, 5, -5, 5)

# draw axes and plot

drawAxes()

plot(f)

# suspend window

wait()

8.8 Wave Equation Example

# import mathlab

from mathlab import *

# start and clear canvas

start()

clear()

# set axes

axes(-5, 5, -5, 5, -1, 1)

# wave equation with initial condition

ic = lambda x : -normalPDF(0, 1, x)

icPrime = lambda x: 0

t0 = 0

f = WaveEq(lambda x : None, 8, ic, icPrime, t0, -5, 5, -5, 5)

# draw axes and plot

drawAxes()

plot(f)

# suspend window

wait()
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8.9 PHYSLAB: Swirl Shape

# import mathlab

from mathlab import *

# make the particle

p = Particle(ef = ForceField("0,0,-1e6"),

mf = ForceField("0,0,t*1e8/3"),

gf = ForceField("0,0,0"),

ff = ForceField("0,0,0"),

charge = 1e-9, mass = 1,

x0 = 4.85, y0 = 4.85, z0 = 5,

xPrime0 = 0, yPrime0 = -1, zPrime0 = 0,

t_min = 0, t_max = 200)

# initialize mathlab for physlab

start()

clear()

setMode("PHYSLAB")

# draw axes and plot

drawAxes()

plot(p)

# suspend window

wait()

8.10 Solving a System of Linear Equations

Solve the following system of linear equations:
2x+ y − 2z = 3

x− y − z = 0

x+ y + 3z = 12

# import mathlab matrices

from mathlab import Matrix

# initialize matrix

M = Matrix([[2,1,-2,3],[1,-1,-1,0],[1,1,3,12]])

# find reduced row-echelon form

rref = M.rref()

# get last column and round

sol = round(rref.col(-1))

# print solution

print(sol)
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8.11 Polynomial Regression with Scatter Plot

# import mathlab

from mathlab import *

# define points

points = [(1.2, 3.1), (2.4, 5.9), (3.1, 6.7), (4.8, 6.1), (5.4, 4.5)]

# perform degree 2 polynomial regression

coeffs, _ = polynomialRegression(points, 2)

# make polynomial function

def f(x):

result = 0

for i in range(len(coeffs)):

result += coeffs[i] * x ** (len(coeffs) - i - 1)

return result

# set mathlab to 2D, set and draw axes

start()

clear()

setMode("MATHLAB 2D")

axes(0, 6, 0, 13)

drawAxes()

# scatter the points

scatterPlot(points)

# plot of the regression line

plot(Cartesian2DyDep(f))

# suspend window

wait()
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9 Updates

• 2018, June 14. Corrected typo in section 8.6.
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